Eschenbach

25 Apr 19
Partnership for Safe Medicines
25 Apr 19
Grandchild of God.

I haven’t ever stepped to any music class, I wish I had but was never lucky enough to, anyway it doesn’t mean that I can’t appreciate and analyse a good work, I may not be able to use all the fancy music language and might not know perfect pitch or counterpoint, but I appreciate the […]

25 Apr 19
Site Title

Eschenbach Mein Stamm Album Download Neues Herunterladen Kostenlos : https://thediversmusic.com/search/albums/Eschenbach%20Mein%20Stamm

24 Apr 19
Observer

Many have blamed the FDA for impeding patients’ searches for experimental treatment options, but the facts speak otherwise.

23 Apr 19
Skating Under The Ice

I have just one rule about writing. I only write when I can’t stand not writing, when the ideas roiling around in my head cry out to be put down on paper. And this is that point, where I stop thinking and start writing about how as I described in my last post, after 142 […]

23 Apr 19
Partnership for Safe Medicines

In this piece, which was published in the Inside Sources on April 22, 2019, Michael Graham reviews the case against drug importation: “As Scott Gottlieb said in 2016 before becoming President Trump’s FDA chief…’There are simply too many channels for fake drugs to enter any importation scheme to forgo some meaningful controls.’”

23 Apr 19
Daily Democrat
Scientists have successfully sequenced the coast redwood and giant sequoia genomes, completing the first major milestone of a five-year project to develop the tools necessary to study these forests’ genomic diversity. The research partners, composed of UC Davis, Johns Hopkins University and the Save the Redwoods League, are making the data publicly available Tuesday. The coast redwood genome is now the second-largest ever sequenced at nearly nine times the size of the human genome. The genome of the giant sequoia is roughly three times that of the human genome. Much like sequencing the human genome opened the door to finding cures for things like sickle cell anemia, sequencing the redwood and sequoia genome could help conserve and restore those species. “Our patient is the redwood forest,” said David Neale, professor in the Department of Plant Sciences at UC Davis. “It’s not healthy. We seek to make it healthy again, and we need that same foundational resource as a human physician or medical professional needs for their patients.” Over the past 150 years, 95 percent of the ancient coast redwood range and about one-third of the giant sequoia range have been logged. With this unprecedented loss of old trees and the addition of redwood clones often planted in their place, conservationists have grown concerned that the forests’ genomic diversity has fundamentally changed. If diversity has declined, it could leave the redwoods vulnerable to drought, fire and other stressors related to climate change. By sequencing these trees’ genomes, the scientists are providing a tool that resource managers can use to help discern a redwood forest’s genetic potential for adapting to its current or future environment. “We’re trying to build a 23andMe for trees, where a manager sends in their samples and gets a risk evaluation of their forest populations, if not individual trees,” Neale said. “Completing the sequences of the coast redwood and giant sequoia genomes is the first step.” These conifers have giant genomes, and full sequencing of them has only been possible in the last decade. The coast redwood has six sets of chromosomes (hexaploid) and 27 billion base pairs of DNA. The giant sequoia has two sets of chromosomes (diploid) and over 8 billion base pairs. For comparison, the largest genome sequenced to date belongs to the axolotl, a North American salamander whose genome was completed in 2018 and has more than 28 billion base pairs. “We pushed the boundaries of genome-sequencing technology to take on the redwood and sequoia mega-genomes,” said Steven Salzberg, professor of biomedical engineering at Johns Hopkins University. “After using our specially developed algorithms to assemble these enormous and complex genome sequences, we have gained a new appreciation for how difficult it is to put together a hexaploid genome, especially one as large as the coast redwood’s.” The redwood genome project was launched in late 2017, with a projected five-year timeline. By the end of the project, the genome sequences and screening tools developed will allow field crews to quickly assess adaptive genomic diversity in redwood forests to inform management plans that restore the health and resilience of these forests throughout their natural ranges. With the genomes sequenced, the league will work to inventory diversity across the landscapes and identify “hot spots” of genomic diversity for enhanced protection and areas of low diversity for restoration. “Every time we plant a seedling or thin a redwood stand to reduce fuel loads or accelerate growth, we potentially affect the genomic diversity of the forest,” said Emily Burns, director of science for Save the Redwoods League. “With the new genome tools we’re developing now, we will soon be able to see the hidden genomic diversity in the forest for the first time and design local conservation strategies that promote natural genomic diversity. This is a gift of resilience we can give our iconic redwood forests for the future.” During the next stage of the project, researchers will create a database capturing range-wide genomic variation within each species; develop tools that will allow resource managers to identify coast redwood and giant sequoia genetic variation while in the field; compile forest genetic inventories; and launch pilot restoration projects based on the accrued data. “When we celebrated the league’s 100th anniversary last year, we reaffirmed our commitment to restore entire landscapes of young, recovering redwood forests,” said Sam Hodder, president and CEO of Save the Redwoods League. “Sequencing the coast redwood and giant sequoia genomes for the first time opens a new scientific frontier for our restoration projects. This work will reveal the forests’ genetic identity so that we can protect the diversity that’s left, and in some areas, restore what was lost.” Major funding for the research came from Save the Redwoods League. A significant lead gift to the league to fund the initial sequencing of the genomes was provided by Ralph Eschenbach and Carol Joy Provan.
23 Apr 19
Bon Bon Lifestyle Webazine

The results of the Easter Festival, just in, show a drop in ticket sales from 93 percent to 90.5. Meistersinger sold out, but other events proved less attractive, notably the Eschenbach performance of Dvorak’s Stabat Mater. In all, 18,800 tickets were sold.   source https://slippedisc.com/2019/04/salzburg-box-office-is-down/

23 Apr 19
WrittenCasey

I once thought to myself, in one of those moments of passing lucidity: Is the point of life to remember how to enjoy breathing? Is it the most basic pleasure? Breath. Breathe. Breather. Breathers. Did you know the word “panic” does derive from Pan?  Look it up, might be buried deeper than a single dictionary. […]

21 Apr 19
Earth to Ash

In youth, we learn. In age, we understand. – Marie Von Ebner-Eschenbach

19 Apr 19
Pulse 2.0

Palo Alto, California-based agentless enterprise IoT security company Armis announced it raised $65 million in Series C funding led by Sequoia Capital.

17 Apr 19
STOP THESE THINGS

The relationship between intermittent renewables and rocketing power prices is pretty obvious, just ask a Dane, German or South Australian. These joints have a couple of things in common: heavily subsidised and chaotically intermittent renewable energy and the world’s highest power prices. That, well-settled, relationship is universal, as Fancis Menton documents below. How Much Do […]